
Contents

Introduction 1

Architecture overview 3

Webform Server system components 3

Front End Application 4

Repository 4

Translator 4

Shared File Cache 4

Access Control System 5

Log Server 5

HTTP Server 5

Hardware load balancer 5

SSL accelerator 5

Recommendations for initial setup and

tuning 7

Setting up your overall system 7

Setting up servers and virtual servers 7

Install each component on a dedicated server . . 7

Apply latest patches 8

Do not use multiple heaps for memory allocation

on AIX 8

Provide the Viewer to some of your users . . . 8

File Descriptor Limit 8

Network 8

Designing forms 9

Compressing forms 9

Setting up the Front End Application 9

Deploying the Front End Application 9

Complementary design of Front End Application

and forms 11

Configure the Front End Application for minimal

logging 11

Do not use system garbage collection 11

Form data population and extraction 12

Disable Viewer detection if not using Viewer . . 12

Use the Streaming API 12

Use Server Speed Flags 12

Setting up the Access Control System 14

Use the Access Control Database 14

Setup a separate table for each virtual server . . 14

Tune the Access Control Database 14

Setting up the Translator 14

Deploying the Translator 14

Setting the process size for the Translator server 18

Configure the Translator for high performance . 18

Setting up the Shared File Cache 20

Disk system 20

Use the local file system on the Translator server

for disk I/O-bound applications 20

Setting up the Log Server 21

Setting up IBM HTTP Server 21

Use IBM HTTP Server 21

Tune IBM HTTP Server 21

Setting up hardware load balancers 21

Setting up WebSphere Portal 21

Testing Performance 23

Tools for testing AIX 23

Tools for testing WebSphere Application Server . . 25

Tools for testing Windows 25

Tools for testing Java 25

Tools for testing DB2 26

Appendix. Resources 27

Appendix. Notices 29

Trademarks 30

© Copyright IBM Corp. 2003, 2007 iii

iv

Introduction

IBM® Workplace Forms™ Server – Webform Server translates XFDL documents into

HTML/JavaScript documents. This allows users to view, fill out, sign, and submit

XFDL documents using only a Web browser. In other words, users can fill out

XFDL forms without downloading or installing browser plug-ins or other

programs.

About this document

This document explains how to optimize your Webform Server system architecture

for the best possible performance. This configuration will differ between each

organization based on differing needs. Some systems will need to serve many

users at once, others will have only one or two very large forms, others will have

several small forms, and so on. This means that each Webform Server setup will

need to be tested and tuned individually. As a result, this document describes

optimization techniques in general terms. Using these techniques and practices will

improve the performance of your system; however, it is impossible to predict how

much effect each practice will have on any given system.

Furthermore, while you can improve the performance of your Webform Server

application by optimizing your system architecture, the overall performance of

your system relies on the optimization of your forms. For advice on designing high

performance forms that will work with Webform Server, refer to the Workplace

Forms Server – Webform Server Best Practices Guide.

Note: This document does not describe how to install, configure, and administrate

Webform Server. For this information, see the Workplace Forms Server –

Webform Server Administration Manual.

Who should read this document

This document is intended for system administrators and architects responsible for

designing, installing, configuring, or maintaining Webform Server components.

This document assumes you are familiar with basic system administration and

form, application, and system development.

© Copyright IBM Corp. 2003, 2007 1

2

Architecture overview

The following diagram represents a suggested Webform Server system architecture

for high performance.

Reverse
HTTP Proxy

HTTP Server

Front End
Application

HTTP Server

Translator

Log Server Access Control
Database

Shared
File Cache

Internet

UserUser User

A Basic Webform Server System

Repository

Webform Server system components

A Webform Server system is a collection of hardware and software components

that includes the use of Webform Server for delivering forms to end-users.

A typical Webform Server system consists of the following primary components:

v Front End Application

v Repository

v Translator

© Copyright IBM Corp. 2003, 2007 3

v Shared File Cache

v Access Control System

v Log Server

v HTTP Server

Front End Application

The Front End Application controls communication between end-users, the

Translator, and possibly other applications (for example, a form repository,

workflow application, and so on). You can also use the Front End Application to

populate a form with data before presenting the form to a user, and to extract data

from a form after the user submits it.

You create the Front End Application by doing one of the following:

v Create a servlet and deploy it within an application server (IBM WebSphere®

Application Server). Webform Server includes a servlet sample that represents a

simple Front End Application.

v Create a portlet and deploy it within a Web portal (IBM WebSphere Portal).

Webform Server includes a portlet sample that represents a simple Front End

Application.

You also use the Workplace Forms Server – API for populating forms with data,

validating submitted forms, extracting data from submitted forms, and performing

other form processing functions.

Repository

The Repository is a database, file system, content management system, or other

back end system for storing forms and associated files.

The repository may also:

v Provide the Front End Application with data for pre-populating a form

v Store or use the data submitted by users and extracted from the form by the

Front End Application

Translator

The Translator converts forms between XFDL and HTML and stores form instances

(forms that an end-user is interacting with) in memory within its form cache.

The Translator consists of the following:

v Translator servlet

v IBM WebSphere Application Server

v Workplace Forms Server – API

Shared File Cache

The Translator stores form instances (forms that an end-user is interacting with) in

memory within its form cache and on disk within the Shared File Cache.

The Translator’s form cache can store a specific number of form instances in

memory. When this number is exceeded (for example, when many users are

simultaneously completing forms), then some form instances are saved to the

Shared File Cache.

4

The Shared File Cache is shared between multiple instances of the Translator,

ensuring high availability. If one Translator instance or server fails, another

instance or server can continue the user session by accessing the data from the

Shared File Cache.

Access Control System

The Access Control System tracks form instances in the Shared File Cache. The

Access Control System also keeps track of which forms instances are in use, when

each form instance was last accessed, and which user session is associated with

each form instance.

You can deploy the Access Control System using one of two methods:

v Access Control Server – Uses a file system on a single server.

v Access Control Database – Uses an SQL database.

Log Server

The Log Server logs activity for the Translator and the Front End Application

servlet/portlet.

HTTP Server

HTTP servers are used within high performance Webform Server systems to:

v Handle HTTP connections between the reverse proxy server and the Front End

Application

v Handle HTTP connections between the Front End Application and the Translator

v Provide software load balancing across a cluster of Front End Application

servers (see “Deploying the Front End Application” on page 9)

v Provide software load balancing across a cluster of Translator servers (see

“Deploying the Translator” on page 14)

v Provide SSL secure connections

For high performance Webform Server systems, use IBM HTTP Server as the HTTP

server.

For simple Webform Server systems that do not involve a cluster of Front End

Application servers or a cluster of Translator servers and do not require high

performance, you can use the internal HTTP server functionality provided by IBM

WebSphere Application Server instead of dedicated HTTP server software.

Hardware load balancer

Hardware load balancers distribute work between a cluster of servers. Load

balancing can also be performed by software, or by a combination of hardware and

software.

SSL accelerator

Hardware SSL accelerators perform the encryption algorithms involved in SSL

translations.

Architecture overview 5

6

Recommendations for initial setup and tuning

Use the recommendations in this section to setup your intial Webform Server

system and to tune it for maximum performance.

Setting up your overall system

Consider the following when setting up your overall system.

Setting up servers and virtual servers

You can configure a single multi-processor server into several virtual servers. All

virtual servers on a single physical server share the same overall hardware, but

each virtual server behaves as a separate machine.

For example, you may have one physical server that hosts several virtual servers.

You then use each virtual server to host a different Webform Server component.

Support for virtual servers differs for each hardware vendor and operating system.

For example, IBM’s Logical Partitioning (LPAR) is a virtualization system

architecture that supports several operating systems. Refer to your hardware and

operating system documentation for detailed information on setting up virtual

servers.

Note: You can configure a virtual server as follows:

v All virtual servers on a single physical server share CPUs, physical

memory, and disk volumes.

v Each virtual server on a single physical server has its own dedicated

CPUs, physical memory, and disk volumes.

When configuring virtual servers for use in a Webform Server system, use

dedicated CPUs, physical memory, and disk volumes for each virtual server.

Install each component on a dedicated server

Install each system component on a dedicated server (or virtual server):

v Translator (You can install multiple Translator instances on a single server)

v Log Server

v Access Control System

v Shared File Cache

v HTTP Server

v Front End Application

v Repository

Do not install multiple components onto a single server.

Do not install any unrelated software onto the servers hosting the Translator.

© Copyright IBM Corp. 2003, 2007 7

Apply latest patches

Apply the latest patches for all software (operating system, Webform Server,

WebSphere Application Server, DB2®, IBM HTTP Server, WebSphere Portal) during

initial setup. Check for additional patches as a part of routine system maintenance.

Do not use multiple heaps for memory allocation on AIX

Do not configure AIX® to use multiple heaps for memory allocation on any system

running a Java™ application. This includes the servers hosting the Translator, the

Front End Application, and the Log Server. This feature causes problems with the

Java Virtual Machine (JVM).

Provide the Viewer to some of your users

Whenever you use Webform Server to deploy forms to a group of users, consider

providing the Viewer to some of your users.

For example, your user base might include an external group (for example, your

customers who are submitting applications) and an internal group (for example,

your employees who are approving customer applications). In this situation, you

can provide the Viewer to your employees.

If Webform Server detects that the end-user has the Viewer, then the XFDL form is

directly served to the user without conversion to HTML. This will help reduce the

loading of the Translator and increase overall performance.

See also “Disable Viewer detection if not using Viewer” on page 12.

File Descriptor Limit

During testing, set the maximum number of open file descriptors (UNIX®) or file

handles (Windows®) to unlimited. During production, you may want to adjust this

setting based on the needs of your application.

A file descriptor (UNIX) or file handle (Windows) is a number that the operating

system assigns temporarily to a file when it is opened and uses internally when

accessing the file. By default, the operating system limits the number of file

descriptors/handles that each process may open and the total number of file

descriptors/handles that all processes together may consume.

On UNIX systems, you set the maximum number of open file descriptors using the

ulimit command.

On Windows systems, refer to your operating system documentation for detailed

information.

Network

Consider the following when selecting and setting up your network:

v Locate all hardware components on the same LAN and ensure that the LAN is

100BaseT or better (a Gigabit Ethernet is preferred).

v Do not deploy hardware components over a WAN or campus area network.

v On Windows systems, tune TCP/IP by setting the close_wait interval to 30

seconds.

v If your application requires increased failover support, you must allow for

higher bandwidth between the Translator and the Shared File Cache (for

8

example, using a higher bandwidth network, using a dedicated LAN and

mounting the Translator and Shared File Cache via NFS, or using a SAN).

Designing forms

The performance of your Webform Server system is highly dependent upon the

design of the forms being used.

The overall size of your forms and the number of pages, items, and computes that

it contains can adversely affect the performance of Webform Server applications. To

ensure the best performance, architects of Webform Server solutions should work

closely with form designers to ensure that your system is tuned to support your

forms. Furthermore, form designers should review “Best Practices” and “What’s

New” documentation to ensure that they are familiar with form design best

practices, new functionality, and functionality changes.

In general, you should use XForms-type forms when integrating forms with

applications that already use XML, especially if those applications offer XML

interfaces. XForms allows you to easily extract XML instance data from the form

instead of creating a custom module to extract it. Furthermore, XForms allows you

to format the data to match any schema and validate the data against the schema

before submission.

Even if your application does not use XML, XForms can still benefit your system.

The data model simplifies copying information from one page to another, making

wizard-style forms easier to create and manage.

Additionally, forms for high performance applications should consist of five or

fewer pages, with each page containing less than 30 items. From a performance

perspective, if you need to collect a lot of information it is better to provide a

series of smaller forms than to provide one large form. An application that uses

five forms with five pages each will outperform an application that uses one form

of 25 pages. The form series can still share data, including form pre-population, by

passing the data model (or parts of the data model) from one form to another.

For detailed information on designing forms for use in a high performance

Webform Server application, see the Webform Server Best Practices Guide.

Compressing forms

In general, do not compress your forms. Compressed forms significantly increase

the CPU loading on the Translator server.

Using uncompressed forms will result in higher data transfers over your network.

If your forms are very large, network bandwidth may become an issue. In these

situations, you may prefer to compress your forms to reduce network loading.

Setting up the Front End Application

Consider the following when setting up and tuning the Front End Application.

Deploying the Front End Application

You can deploy the Front End Application as follows:

v Deploying a single instance of the Front End Application on a single server may

be acceptable for some applications.

Recommendations for initial setup and tuning 9

v Deploying multiple instances of the Front End Application across a cluster of

servers provides failover support and allows for load balancing and may be

required for high performance applications.

Start with one server hosting the Front End Application. If testing reveals that the

server is CPU-bound, you may want to deploy an additional server hosting the

Front End Application to increase overall performance.

If your Front End Application is performing a large amount of processing, then

you may want to use more servers.

When deploying the Front End Application across a cluster of servers, you must:

v Provide load balancing between each instance of the Front End Application

(using IBM HTTP Server or a hardware load balancer).

v Configure WebSphere Application Server for clustering.

Reverse
HTTP Proxy

HTTP Server

Front End
Application

Front End
Application

HTTP Server

Translator

Log Server Access Control
Database

Shared
File Cache

UserUser User

Deploying the Front End Application Across a Cluster of Servers

Internet

Repository

10

Complementary design of Front End Application and forms

When the Front End Application presents the user with an HTML page, that page

contains one or a combination of the following:

v HTML and JavaScript™ generated by the Translator from an XFDL form

v HTML generated by the Front End Application (for example, using servlets, JSF,

and so on)

Design your forms and your Front End Application so that HTML content is

generated using the appropriate method. You can optimize overall performance by

generating more content with the Front End Application and generating less

content with the Translator.

For example, use the Front End Application to:

v Present the user with a login screen.

v Present a list of forms that the user can select.

v Present a confirmation message after form submission.

v Present a summary page containing data extracted from the form.

Use an XFDL form to:

v Collect user data.

v Provide a precise layout of items.

v Provide highly controlled navigation within the form.

Configure the Front End Application for minimal logging

Front End Application servlet/portlet events are logged to the Log Server. If you

configure the servlet/portlet for increased logging, the performance of the Log

Server and the overall Webform Server system will decrease.

When creating the web.xml file for the servlet/portlet, set the logLevel to 0 (only

errors and exceptions are logged). If you set logLevel to 1, request URIs and

response events are also logged.

Note: You must also configure the Log Server separately. See “Setting up the Log

Server” on page 21.

Do not use system garbage collection

Webform Server applications often rely on the Workplace Forms Server – API.

However, the default method of system garbage collection hinders the performance

of the Java API. As a result, you should consider using a new method of garbage

collection to improve memory management and Webform Server performance.

Starting in Version 2.7 of Webform Server, a new memory management model is

available for the Classic API which mimics the memory management system used

by the Streaming API. You can now determine whether the Java API should

request system garbage collection (GC) when destroying a FormNodeP object. If

system GC is used, all running processes are suspended while the garbage

collection takes place. If system GC is not required, objects notify the Java API

when references to the object are no longer needed. For most objects, this

notification is automatic. This allows for significant performance improvements as

unnecessary system GC requests are eliminated.

Recommendations for initial setup and tuning 11

To take advantage of this new memory management model, you must set the

setHardGCFlag method to false, which disables system garbage collection. For

more information about setHardGCFlag and garbage collection, see the technote at

http://www-1.ibm.com/support/docview.wss?rs=2357&contex.

Form data population and extraction

For forms that contain a data model (XForms or XML Model), do not populate

data or extract data for individual elements:

v When populating a form with data for all elements within an instance, populate

the entire instance at the root level. Populating elements individually is much

slower.

v When populating a form with data for all child elements of a parent, populate

the parent element at the sub-root level. Populating child elements individually

is much slower.

v When extracting data from a form, extract the entire instance. Extracting

elements individually is much slower.

Disable Viewer detection if not using Viewer

By default, the Front End Application will detect if the end-user has the Viewer

installed on their system. If you know that none of your users have the Viewer,

you can improve performance by disabling automatic detection.

Add the following to the Front End Application’s web.xml file:

<init-param>

 <param-name>disableViewerDetection</param-name>

 <param-value>true</param-value>

</init-param>

The disableViewerDetection setting is not a documented feature.

See also “Provide the Viewer to some of your users” on page 8.

Use the Streaming API

If you are developing a Front End Application using the Workplace Forms Server -

API, use the Streaming API (new in Workplace Forms Server 2.7) unless your

application requires functions provided only in the Classic API. The Streaming API

uses less memory than the Classic API. The performance of the Streaming API

depends on the form and your use of the Streaming API.

When using the Streaming API, you can improve performance by using the

addHint and addHints methods. These methods let you tell the parser which

nodes will be referenced by your application or method, allowing the parser to

collect all the requested data while traversing the form once.

Use Server Speed Flags

If you are developing a Front End Application using the Workplace Forms Server -

API, you can significantly improve performance by turning on the server speed

flag setting in the readForm method.

When a form is read into memory, it evaluates the form data. This includes

evaluating computes, detecting duplicate sids, formatting, XForms processing, and

so on. As a result, it takes longer to read the form into memory. However, your

application may not always need these evaluations to take place when the form is

12

http://www-1.ibm.com/support/docview.wss?rs=2357&contex

read. In fact, if you are using the Streaming API, form data evaluation is not

permitted when reading the form into memory. However, if you are using the

Classic API, the readform method can be configured to only perform specified

evaluation behaviors. This is done through the flags parameter. The flags

parameter has the following settings:

0 No special behavior.

XFDL.UFL_SERVER_SPEED_FLAGS

Turns off the following features: computes, automatic formatting, duplicate

sid detection, XForms processing, write relevant, the event model, and

relative page and item tags (for example, itemprevious, itemnext, and so on).

It also ignores errors. As a result, this setting significantly improves server

processing times.

Note: This setting does not respect XForms relevance.

XFDL.UFL_AUTOCOMPUTE_OFF

Reads the form into memory, but disables the compute system so that no

computes are evaluated.

XFDL.UFL_AUTOCREATE_CONTROLLED_OFF

Reads the form into memory, but disables the creation of all options that

are maintained only in memory (for example, itemnext, itemprevious,

pagenext, pageprevious, and so on).

XFDL.UFL_AUTOCREATE_FORMATS_OFF

Reads the form into memory, but disables the evaluation of all format

options.

XFDL.UFL_XFORMS_INITIALIZE_ONLY

Turns off the following features: controlled item construction, UI

connection to the XForms model, action handling set up, and the

rebuild/recalculate/revalidate/refresh sequence after instance

replacements. This flag respects XForms relevance and validity settings.

XFDL.UFL_XFORMS_OFF

Turns off XForms processing, including UI connection to the XForms

model. The primary use of XFDL.UFL_XFORMS_OFF is to turn XForms

processing on in XFDL.UFL_SERVER_SPEED_FLAGS. This is done by

negating XFDL.UFL_XFORMS_OFF with a bitwise NOT and including it

with the XFDL.UFL_SERVER_SPEED_FLAGS setting with a bitwise AND.

For example:

(XFDL.UFL_SERVER_SPEED_FLAGS &(~XFDL.UFL_XFORMS_OFF))

 The fastest setting is XFDL.UFL_SERVER_SPEED_FLAGS, as it performs the fewest

evaluations. The slowest setting is 0, as it performs all of the evaluations. If you

need some behaviors and not others, you can use multiple flags by combining

them using a bitwise OR, AND, or NOT. For example, the following sample

disables the evaluation of computes and format options:

 XFDL.UFL_AUTOCOMPUTE_OFF | XFDL.UFL_AUTOCREATE_FORMATS_OFF

For more information about the readform method and how it is used, see the

Workplace Forms Server API – Java API User’s Manual.

Example

The following example demonstrates the use of readForm to load a form into

memory without performing any evaluations:

Recommendations for initial setup and tuning 13

private static FormNodeP loadForm() throws Exception

 {

 XFDL theXFDL;

 formNodeP theForm;

 if ((theXFDL = IFSSingleton.getXFDL()) == null)

 throw new Exception("Could not find interface");

 if ((theForm = theXFDL.readForm("formSample.xfd", XFDL.UFL_SERVER_SPEED_FLAGS))

 == null)

 throw new Exception("Could not load form.");

 return(theForm);

 }

Setting up the Access Control System

Consider the following when setting up and tuning the Access Control System.

Use the Access Control Database

Use the Access Control Database. Do not use the Access Control Server. The Access

Control Database performs faster than the Access Control Server. In addition, the

Access Control Database provides failover support.

Setup a separate table for each virtual server

For high performance applications that do not require failover support, configure

the Access Control Database so each virtual server hosting Translator instances has

its own table in the database. You must also configure the Translator for use with

those tables and setup a separate Shared File Cache for each virtual server.

See “Deploying the Translator” for more information.

Tune the Access Control Database

Tune the Access Control Database (DB2) for maximum performance. If you do not

tune DB2, then overall performance may be impacted. See the DB2 documentation

for information on tuning DB2.

Setting up the Translator

Consider the following when setting up and tuning the Translator.

Deploying the Translator

You can deploy the Translator in several ways:

v Deploying a single instance of the Translator on a single server (or virtual

server) may be acceptable for very simple applications that do not require high

performance or failover support.

v Deploying multiple instances of the Translator on a single server (or virtual

server) provides some failover support and is required for high performance

applications. (If one Translator instance fails, then another Translator instance

can continue the user session.) Increasing the number of Translator instances on

a server is referred to as vertical scaling.

v Deploying multiple instances of the Translator across a cluster of servers (or

virtual servers) provides increased failover support and may be required for

some high performance applications. (If one Translator server fails, a Translator

instance on another server can continue the user session.) Increasing the number

of servers hosting Translator instances is referred to as horizontal scaling. If you

deploy the Translator in this manner, you must provide load balancing between

14

the servers (for example, using IBM HTTP Server). You must also configure each

instance of WebSphere Application Server for clustering.

Use the following steps to help you setup, test and tune your Translator

configuration:

1. For your initial setup, start with one virtual server hosting one instance of the

Translator.

Virtual Server with 1 Translator Instance

OS Translator

CPU 1

16 GB RAM
CPU 2

CPU 3

CPU 4

Virtual Server 1

2. After initial testing, adjust the Translator server configuration by increasing the

number of Translator instances on the virtual server until the CPU or memory

becomes 100% utilized.

Note: Make sure each Translator instance has no less than 4 GB of physical

memory available. For example, if your virtual server has 16 GB of

memory, you can increase the number of Translator instances to a

maximum of 4.

Virtual Server with 4 Translator Instances

OS

Translator

Translator

Translator

Translator

CPU 1

16 GB RAM
CPU 2

CPU 3

CPU 4

Virtual Server 1

In general, the virtual server will become memory-bound (the memory is the

bottleneck) for larger forms or CPU-bound (the CPU is the bottleneck) for

smaller forms.

Occasionally, the virtual server will become I/O bound, especially when

configured to provide better failover support, which requires frequent reading

from and writing to the Shared File Cache.

3. Next, re-partition the server into a greater number of virtual servers. For

example, if your server has four CPUs, your inital configuration would be 1

virtual server (with 4 CPUs) and your next configuration would be 2 virtual

servers (with 2 CPUs each).

Note: High performance Webform Server applications require at least 2 CPUs

per virtual server hosting Translator instances.

Recommendations for initial setup and tuning 15

2 Virtual Servers with 1 Translator Instance per Server

OS Translator

CPU 1

8 GB RAM

CPU 2

Virtual Server 1

OS Translator

CPU 3

8 GB RAM

CPU 4

Virtual Server 2

Reverse
HTTP Proxy

HTTP Server

Front End
Application

HTTP Server

Translator Translator

Log Server Access Control
Database

Shared
File Cache

UserUser User

Deploying the Translator Across a Cluster of Servers

Internet

Repository

4. Experiment with different combinations of virtual servers and Translator

instances until resources are fully utilized.

16

Note: Your Webform Server application will become more complex as you

increase the number of virtual servers and Translator instances. Keep in

mind the management of your overall system.

2 Virtual Servers with 2 Translator Instances per Server

OS

Translator

TranslatorCPU 1

8 GB RAM

CPU 2

Virtual Server 1

OS

Translator

TranslatorCPU 3

8 GB RAM

CPU 4

Virtual Server 2

5. If your Webform Server application consists of several forms of various sizes,

consider hosting smaller forms on a dedicated virtual server and larger forms

on a dedicated virtual server. Performance is highly dependent upon form size

and design, so this will allow you tune each virtual server in different ways.

For example, each virtual server could have a different number of Translator

instances.

2 Virtual Server Configurations

OS

CPU 1

8 GB RAM

CPU 2

Virtual Server 1

OS

Translator

Translator

Translator

CPU 3

8 GB RAM

CPU 4

Virtual Server 2

6. If testing and tuning does not result in acceptable performance, adjust your

configuration as follows:

v If virtual servers are memory-bound, increase the amount of memory for the

virtual server by adding physical memory to the server. Continue increasing

the amount of physical memory until memory utilization falls just below 100

percent.

v If virtual servers are CPU-bound, add more CPUs to the server or deploy an

additional server for hosting Translator instances.

Recommendations for initial setup and tuning 17

Setting the process size for the Translator server

Configure the Translator server operating system to use the maximum allowed

process size.

Regardless of how much physical memory a server has, the amount of memory

that each process can address is limited by the operating system. On a 32-bit

operating system, each process can address 4 GB of memory. By default, the

operating system reserves some of the 4 GB for kernel usage and some for

application usage. However, you can configure some operating systems so more

memory is reserved for application usage and less for kernel usage.

The memory available for application usage is the amount of memory available for

each Translator instance’s form cache. You must set the size of the form cache

based on the available memory. See “fcCacheSize.”

v AIX – By default, AIX (32 bit) reserves 1.75 GB for kernel usage and 2.25 GB for

application usage. Using the very large address-space model, AIX reserves 0.75

GB for kernel usage and 3.25 GB for application usage. This results in a very

slight decrease in operating system performance, but will allow you to increase

the number of simultaneous users that can access the application at maximum

performance.

v Linux® – By default, many versions of Linux (32 bit) reserve 1 GB for kernel

usage and 3 GB for application usage. Refer to your operating system

documentation for information on configuring these values.

v Solaris – By default, Solaris (32 bit) reserves 0.25 GB for kernel usage and 3.75

GB for application usage. Refer to your operating system documentation for

information on configuring these values.

v Windows – By default, Windows reserves 2 GB for kernel usage and 2 GB for

application usage. On some versions of Windows, using the /3GB option

reserves 1 GB for kernel usage and 3 GB for application usage.

Configure the Translator for high performance

Consider the following when configuring the Translator.

fcCacheSize

Configure each Translator instance so its in-memory form cache can make full use

of the memory available for each process.

You set the form cache size for a Translator instance using the fcCacheSize option,

which represents the maximum number of forms kept in the memory cache. (This

value also represents the number of users that can simultaneously access the

Translator instance at maximum performance.)

If there is 2.25 GB of memory available for each process, and your form is 10 MB

in memory, then setting fcCacheSize to 200 will result in 200 x 10 MB = 2 GB

(which will use most of the available memory).

Note: The size of a form in memory is larger than on disk. For example, a form

that is 1 MB on disk may be 10 MB in memory. One way you can

approximate the size of a form in-memory is to load the form in the Viewer,

fill in all the form data and attach any files, and monitor the process

memory usage.

18

If your Webform Server system consists of 8 Translator instances, then your system

can support 8 x 200 = 1600 simultaneous users at maximum performance. (If more

than 1600 users try to use your system simultaneously, then the Translator will

write some form instances to the Shared File Cache, and performance will

decrease.)

If you set the form cache size too small, then your Webform Server system will

support fewer simultaneous users at maximum performance. For example, if there

is 2.25 GB of available memory, and your form is 10 MB in memory, then setting

fcCacheSize to 100 will result in 100 x 10 MB = 1 GB of memory for the form cache

(which will use only half of the available memory).

If you set the form cache size too large, then the Translator will try to make use of

more memory than is available, causing the Translator JVM to exit with an Out of

Memory error. For example, if there is 2.25 GB of available memory, and your form

is 10 MB in memory, then setting fcCacheSize to 300 will result in 300 x 10 MB = 3

GB of memory for the form cache (which is more than the available memory).

fcTimerDelay

Set fcTimerDelay to 90 seconds or greater.

fcTimerDelay controls how frequently the Translator checks in-memory forms for

updates and writes them to the Shared File Cache. The default value is 10 seconds.

Lower values provide greater failover support, because in-memory forms are

written to the Shared File Cache more frequently. (Once a form is written to the

Shared File Cache, any Translator instance can take over session interaction.)

Higher values are recommended for high performance applications. However, the

higher the value, the more user data will be lost during a failover, degrading the

user experience.

contactFrequency

Do not set contactFrequency any lower than the default value: 900 seconds.

contactFrequncy controls how often a form instance (that is, a form an end user is

completing) contacts the Access Control System to indicate that the form is still

active. The Access Control System maintains the state of the form and clears

inactive forms from the Shared File Cache.

authType

By default, the Translator performs IP authentification (by contacting the Access

Control System) on each request to prevent session hijacking. IP authentification

failure is indicated by an error in the traslator’s log:

Couldn’t authorize for FormInstance: <Form Instance ID>

Authorization failed for user: <hostname or IP address>

If this error occurs frequently in your system, it may be due to your network

configuration. Certain network configurations do not correctly pass the user’s IP

address to the Translator. If so, you can disable IP authentication by setting

authType to none in the translator.properties file. Enabling or disabling IP

authentification does not significantly affect performance. However, disabling IP

authentification will eliminate this misleading error from appearing in the log.

Recommendations for initial setup and tuning 19

Note: The authType option is not a documented option.

acCleanerInterval

If testing indicates that your application is I/O bound, experiment with higher

acCleanerInterval settings.

acCleanerInterval controls how often the Translator checks the Shared File Cache

for old form instances that can be deleted. The default value is 180 seconds.

focusNotificationItems

Depending upon your application, you may want to set focusNotificationItems to

none to increase overall performance.

By default, the user’s cursor position is posted to the Translator. When you set

focusNotificationItems to none, the user’s cursor position is not posted to the

Translator.

Setting up the Shared File Cache

Consider the following when setting up and tuning the Shared File Cache.

Disk system

Disk I/O, even over networked file systems, is not a bottleneck for typical

Webform Server systems.

If testing reveals that your application is disk I/O-bound, and you require failover

support, use a higher performing disk system (for example, RAID). If you do not

require failover support, use the local file system for the Shared File Cache. See

“Use the local file system on the Translator server for disk I/O-bound

applications”

See the Performance Benchmarks for Webform Server document for information on

sizing the disk system for the Shared File Cache.

Use the local file system on the Translator server for disk

I/O-bound applications

If testing reveals that your application is disk I/O-bound, and your application

does not require failover support (which may be acceptable for very small forms),

then you can configure each instance of the Translator to use a local, unshared file

system instead of the Shared File Cache. Use a dedicated volume or partition for

the Shared File Cache on each virtual server. (Multiple Translator instances on the

same virtual server can each use a separate Shared File Cache or they can all share

the same Shared File Cache.)

If each virtual server contains only one Translator instance, then there will not be

any form of failover support. If one Translator instance fails, the load balancer will

transfer the connection to another Translator instance (on a different virtual server)

and the user’s data from the original Translator instance will be lost.

If each virtual server contains more than one Translator instance, and Translator

instances on a common virtual server share the same Shared File Cache, then

limited failover support will be provided. If one Translator instance fails, the load

balancer will transfer the connection to another Translator instance. If both

20

Translator instances are on the same virtual server, then the user’s data will be

maintained. However, if the Translator instances are on different virtual servers,

then the user’s data will be lost.

Setting up the Log Server

Configure the Log Server for minimal logging (for the Translator and the Front

End Application servlet/portlet). Turn off the operational log and debug log. Turn

on only the error log.

Note: You must also configure the Front End Application for logging. See

“Configure the Front End Application for minimal logging” on page 11.

Note: When you disable the operational log, the concept of an audit trail is lost.

Setting up IBM HTTP Server

Consider the following when setting up and tuning IBM HTTP Server.

Use IBM HTTP Server

Use IBM HTTP Server as your system’s Web server.

Do not use the internal HTTP server functionality provided by WebSphere

Application Server. IBM HTTP Server provides faster handling of HTTP

connections, especially under high load.

Tune IBM HTTP Server

You can increase overall performance by tuning the performance of IBM HTTP

Server. See the IBM HTTP Server documentation for information on tuning IBM

HTTP Server.

Setting up hardware load balancers

The use of hardware load balancers will not increase overall performance. IBM

HTTP Server provides load balancing and is usually sufficient. (The Web servers

are usually underloaded by Webform Server traffic alone.)

If your infrastructure already involves the use of hardware load balancers, you can

use them in front of or in addition to IBM HTTP Server, in front of the Front End

Application, or in front of the Translator. If you are using hardware load balancers

in front of the Translator, you must configure the hardware load balancers for

session affinity.

Setting up WebSphere Portal

There are no special considerations in deploying a Webform Server application

within a portal environment. Webform Server can efficiently handle the frequent

content requests made by portlets.

Recommendations for initial setup and tuning 21

22

Testing Performance

Every Webform Server system architecture will differ based on the needs of the

organization. Some systems will need to service many users at once, others will

have only one or two very large forms, others will have several small forms, and

so on. As a result, each form and Webform Server setup will need to be tested and

tuned individually.

Before you can fine tune your Webform Server system architecture, you must

understand how your system resources will be used and how your resources will

be allocated under a heavy load. Ideally, all components should be near saturation,

so that system resources are not wasted. If you want the highest possible

performance from your Webform Server application, you will have to “tweak” the

system to see which configuration provides the best results for your particular

application. We recommend using tools like Rational® Performance Tester to

simulate load and test system, application, and form scalibility. Experimentation is

the key for capturing the highest possible performance.

There are a number of tools that you can use to capture and analyze data. These

include:

v “Tools for testing AIX.”

v “Tools for testing WebSphere Application Server” on page 25.

v “Tools for testing Windows” on page 25.

v “Tools for testing Java” on page 25.

v “Tools for testing DB2” on page 26.

Tools for testing AIX

There are a number of tools and UNIX commands that provide performance

information. These include:

nmon Monitors and analyzes performance data, including:

v CPU utilization

v Memory use

v Kernel statistics and run queue information

v Disks I/O rates, transfers, and read/write ratios

v Free space on file systems

v Disk adaptors

v Network I/O rates, transfers, and read/write ratios

v Paging space and paging rates

v CPU and AIX specification

v Top processors

v IBM HTTP Web cache

v User-defined disk groups

v Machine details and resources

v Asynchronous I/O

v Workload Manager

v Network File System

© Copyright IBM Corp. 2003, 2007 23

v Dynamic LPAR changes for pSeries® p5 and OpenPower™

For more information regarding nmon, see http://www.ibm.com/
developerworks/aix/library/au-analyze_.

UNIX ps command

Reports the performance data for each of the currently running processes.

This data includes:

v The process ID

v The terminal the process was started from

v The CPU usage of the process

v The process name

The ps command can be modified to provide additional information as

well. For more information regarding the ps command, see

http://www.unix.org.ua/orelly/unix/upt/ch38_05.htm.

UNIX Top

Reports the top CPU using processes. For more information regarding Top,

see http://www.unixtop.org/

UNIX vmstat command

Reports the virtual memory usage data, including:

v Memory

v CPU activity

v Paging

v Block I/O

v Processes

The vmstat command can be modified to provide additional information as

well. For more information regarding the vmstat command, see

http://www.linuxcommand.org/man_pages/vmstat8.html.

UNIX iostat command

Monitors system input/output and generates two reports: CPU Usage and

Device Usage. These reports include the following data:

v Percentage of CPU use when executing at the user level.

v Percentage of CPU use when executing at the kernel level.

v Percentage of time that the CPU was idle while there was an

outstanding input/output request.

v Percentage of time that the CPU was idle without an outstanding

request.

v Partition name

v Number of transfers per second.

v Amount of data read (in kilobytes per second and blocks per second).

v Amount of data written (in kilobytes per second and blocks per second).

v Total number of blocks and kilobytes read.

v Total number of blocks and kilobytes written.

v The number of read requests merged and issued per second.

v The number of write requests merged and issued per second.

v The number of sectors and kilobytes read per second.

v The number of sectors and kilobytes written per second.

v The average size of requests (in sectors).

24

http://www.ibm.com/developerworks/aix/library/au-analyze_
http://www.ibm.com/developerworks/aix/library/au-analyze_
http://www.unix.org.ua/orelly/unix/upt/ch38_05.htm
http://www.unixtop.org/
http://www.linuxcommand.org/man_pages/vmstat8.html

v The average queue length of requests.

v The average time for input/output requests to be served (in

milliseconds).

v The average service time for input/output requests (in milliseconds).

v Percentage of CPU time where input/output requests occured.

The iostat command can be modified to provide additional information as

well. For more information regarding the iostat command, see

http://www.linuxcommand.org/man_pages/iostat1.html.

Tools for testing WebSphere Application Server

Use the WebSphere Application Server Tivoli® Performance Viewer to monitor and

analyze performance data for WebSphere Application Server (WAS) from the WAS

administrative console.

Tivoli Performance Viewer is a performance monitor that is embedded in

WebSphere Application Server. It provides performance data on:

v Servlets and JavaServer pages

v Enterprise beans

v Enterprise JavaBeans™ methods

v Server performance

v Connection pools

v Thread pools

For more information regarding Tivoli Performance Viewer, see

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.j.

Tools for testing Windows

The Windows Administrative Tools set includes a Performance tool. The Windows

Performance tool contains two components:

System Monitor

Collects performance data on memory, disk, processor, network, and so on.

Performance Logs and Alerts

Records performance data and sets system notifications to alert you if

values change beyond a given range.

 You can access Windows Administrative Tools through the Start menu. Go to Start

→ Settings → Control Panel. When the Control Panel opens, double-click

Administrative Tools, and then Performance.

For more information about the Windows Performance tool, see

http://www.microsoft.com/windows/windows2000/en/advan.

Tools for testing Java

There are a number of tools you can use to ensure that your Java is efficient.

These tools include:

Thread dumps

Allow you to analyze process exceptions with Java applications. For more

Testing Performance 25

http://www.linuxcommand.org/man_pages/iostat1.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.j
http://www.microsoft.com/windows/windows2000/en/advan

information, see Troubleshooting Java code on AIX: Data collection for AIX core

dumps at http://www.ibm.com/developerworks/aix/library/au-
javaonaix_core.html?ca=drs-.

Code profiler

Allows you to pinpoint sections of inefficient code.

Rational Application Developer

Allows you to rapidly design, develop, assemble, test, profile and deploy

high quality Java/J2EE, Portal, Web, Web services and SOA applications. It

is integrated and optimized for WebSphere Application Server and

WebSphere Portal Server and includes test environments for these

products.

Tools for testing DB2

If you are using an access control database, you should tune your DB2 system

design, database design, and application design.

For more information about tuning DB2, see DB2 UDB V7.1 Performance Tuning

Guide at http://www.redbooks.ibm.com/abstracts/sg246012.html.

26

http://www.ibm.com/developerworks/aix/library/au-javaonaix_core.html?ca=drs-
http://www.ibm.com/developerworks/aix/library/au-javaonaix_core.html?ca=drs-
http://www.redbooks.ibm.com/abstracts/sg246012.html

Appendix. Resources

Tuning Webform Server involves tuning the Webform Server forms and

application, as well as its hardware and software components, such as WebSphere

Application Server, AIX, DB2, and IHS. For more detailed information regarding

Webform Server components, see:

v Workplace Forms – Form Design Best Practices Guide (Viewer and Webform Server

form design principles) at http://publibfp.boulder.ibm.com/epubs/pdf/
c2359500.pdf

v Workplace Forms Server – Webform Server Best Practices Guide (Webform

Server-only form design principles) at http://publibfp.boulder.ibm.com/epubs/
pdf/c2359380.pdf or contact the lab for an updated version with additional

performance guidelines.

v Workplace Forms Server – Administration Manual at http://
publibfp.boulder.ibm.com/epubs/pdf/c2359370.pdf.

v WebSphere Performance Tuning Guide at http://www.redbooks.ibm.com/abstracts/
sg245657.html

v Troubleshooting Guide for WebSphere Application Server at http://www-1.ibm.com/
support/docview.wss?rs=180&uid=swg27005324

v AIX 5L™ Practical Performance Tools and Tuning Guide at http://
www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246478.html?Open.

v Problem Solving and Troubleshooting in AIX 5L at http://www.redbooks.ibm.com/
abstracts/sg245496.html.

v DB2 UDB V7.1 Performance Tuning Guide at http://www.redbooks.ibm.com/
abstracts/sg246012.html.

v DB2 Troubleshooting Guide at http://webdocs.caspur.it/ibm_doc/udb-6.1/db2p0/
index.htm

v IBM HTTP Server Performance at http://publib.boulder.ibm.com/infocenter/
iseries/v5r4/index.jsp?topic=/rzahx/rzahxebushttp.htm.

v Troubleshooting Java code on AIX: Data collection for AIX core dumps at

http://www.ibm.com/developerworks/aix/library/au-
javaonaix_core.html?ca=drs-.

v Rational Application Developer V6 Programming Guide at http://
www.redbooks.ibm.com/abstracts/sg246449.html.

© Copyright IBM Corp. 2003, 2007 27

http://publibfp.boulder.ibm.com/epubs/pdf/c2359500.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/c2359500.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/c2359380.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/c2359380.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/c2359370.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/c2359370.pdf
http://www.redbooks.ibm.com/abstracts/sg245657.html
http://www.redbooks.ibm.com/abstracts/sg245657.html
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27005324
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27005324
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246478.html?Open
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246478.html?Open
http://www.redbooks.ibm.com/abstracts/sg245496.html
http://www.redbooks.ibm.com/abstracts/sg245496.html
http://www.redbooks.ibm.com/abstracts/sg246012.html
http://www.redbooks.ibm.com/abstracts/sg246012.html
http://webdocs.caspur.it/ibm_doc/udb-6.1/db2p0/index.htm
http://webdocs.caspur.it/ibm_doc/udb-6.1/db2p0/index.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/rzahx/rzahxebushttp.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/rzahx/rzahxebushttp.htm
http://www.ibm.com/developerworks/aix/library/au-javaonaix_core.html?ca=drs-
http://www.ibm.com/developerworks/aix/library/au-javaonaix_core.html?ca=drs-
http://www.redbooks.ibm.com/abstracts/sg246449.html
http://www.redbooks.ibm.com/abstracts/sg246449.html

28

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2007 29

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

IBM

AIX

AIX 5L

DB2

OpenPower

pSeries

Rational

Tivoli

WebSphere

Workplace Forms

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Windows is a trademark of Microsoft Corporation in the United States, other

countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

30

����

Program Number: 5724-N08

Printed in USA

	Contents
	Introduction
	Architecture overview
	Webform Server system components
	Front End Application
	Repository
	Translator
	Shared File Cache
	Access Control System
	Log Server
	HTTP Server
	Hardware load balancer
	SSL accelerator

	Recommendations for initial setup and tuning
	Setting up your overall system
	Setting up servers and virtual servers
	Install each component on a dedicated server
	Apply latest patches
	Do not use multiple heaps for memory allocation on AIX
	Provide the Viewer to some of your users
	File Descriptor Limit
	Network

	Designing forms
	Compressing forms

	Setting up the Front End Application
	Deploying the Front End Application
	Complementary design of Front End Application and forms
	Configure the Front End Application for minimal logging
	Do not use system garbage collection
	Form data population and extraction
	Disable Viewer detection if not using Viewer
	Use the Streaming API
	Use Server Speed Flags

	Setting up the Access Control System
	Use the Access Control Database
	Setup a separate table for each virtual server
	Tune the Access Control Database

	Setting up the Translator
	Deploying the Translator
	Setting the process size for the Translator server
	Configure the Translator for high performance

	Setting up the Shared File Cache
	Disk system
	Use the local file system on the Translator server for disk I/O-bound applications

	Setting up the Log Server
	Setting up IBM HTTP Server
	Use IBM HTTP Server
	Tune IBM HTTP Server

	Setting up hardware load balancers
	Setting up WebSphere Portal

	Testing Performance
	Tools for testing AIX
	Tools for testing WebSphere Application Server
	Tools for testing Windows
	Tools for testing Java
	Tools for testing DB2

	Appendix. Resources
	Appendix. Notices
	Trademarks

